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Abstract. An approach is proposed to calculate Generalized Parton Distributions (GPDs) in a Constituent
Quark Model (CQM) scenario. These off-diagonal distributions are obtained from momentum space wave
functions to be evaluated in a given non-relativistic or relativized CQM. The general relations linking the
twist-two GPDs to the form factors and to the leading-twist quark densities are consistently recovered
from our expressions. Results for the leading twist, unpolarized GPD, H, in a simple harmonic-oscillator
model, as well as in the Isgur and Karl model, are shown to have the general behavior found in previous
estimates. NLO evolution of the obtained distributions, from the low-momentum scale of the model up to
the experimental one, is also shown. Further applications of the proposed formalism are addressed.

PACS. 12.39.-x Phenomenological quark models – 13.40.Gp Electromagnetic form factors – 13.60.Hb
Total and inclusive cross sections (including deep-inelastic processes)

1 Introduction

In recent years, Generalized Parton Distributions have be-
come one of the main topics of interest in hadronic physics
(for recent reviews, see, e.g., [1–5]). GPDs are a natural
bridge between exclusive processes, such as elastic scatter-
ing, described in terms of form factors, and inclusive ones,
described in terms of structure functions. As happens for
the usual Parton Distributions (PDFs), the measurement
of GPDs allows important tests of non-perturbative and
perturbative aspects of the theory, QCD, and of phe-
nomenological models of hadrons. Besides, GPDs provide
us with a unique way to access several crucial features
of the structure of the nucleon. In particular, as pointed
out first by Ji [6,7], by measuring GPDs a test of the
Angular Momentum Sum Rule of the proton [8] could
be achieved for the first time, determining the quark or-
bital angular momentum contribution to the proton spin.
Therefore, relevant experimental efforts to measure GPDs,
by means of exclusive electron Deep-Inelastic Scattering
(DIS) off the proton, are likely to take place in the next few
years [9,10]. Besides, GPDs measurements will be done
soon, also through fitting to the available data of the H1
and ZEUS Collaborations, with the HERMES results used
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as cross-checks but excluded from the fit. In this scenario,
it becomes urgent to produce theoretical predictions for
the behavior of these quantities. Several calculations have
been already performed by using different descriptions of
hadron structure: bag models [11,12], soliton models [3,
13], light-front approaches [14] and phenomenological esti-
mates based on parametrizations of PDFs [15,16]. Besides,
an impressive effort has been devoted to study the pertur-
bative QCD evolution [17,18] of GPDs, and the GPDs at
twist-three accuracy [19].

So far, to our knowledge, no calculations have been
performed in a Constituent Quark Model (CQM), al-
though a step towards this can be found in [4,20], where
the non-relativistic limit is shortly discussed. The CQM
has a long story of successful predictions in low-energy
studies of the electromagnetic structure of the nucleon. In
the high-energy sector, in order to compare model pre-
dictions with data taken in DIS experiments, one has to
evolve, according to perturbative QCD, the leading-twist
component of the physical structure functions obtained at
the low-momentum scale associated with the model. Such
a procedure, already addressed in [21,22], has proven suc-
cessful in describing the gross features of standard PDFs
by using different CQM (see, e.g., [23]). Similar expecta-
tions motivated the present study of GPDs. In this paper,
a simple formalism is proposed to calculate the quark con-
tribution to GPDs from any non-relativistic or relativized
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model. By using such a procedure, the GPDs can be eas-
ily estimated, providing us with an important tool for the
planning of future experiments.

The paper is structured as follows. After the definition
of the main quantities of interest, the proposed calculation
scheme is introduced in the third section. Then, results ob-
tained in a simple harmonic oscillator model and in the
Isgur and Karl model [24] are shown in the following sec-
tion. NLO perturbative evolution from the scale of the
model to the experimental one has been evaluated, and
results are presented in the fifth section. Further appli-
cations of the procedure, using relativistic models and in-
cluding antiquarks degrees of freedom, are in progress and
will be presented elsewhere [25]. Conclusions are drawn in
the last section.

2 General formalism

We adopt the formalism introduced by Ji, who called
GPDs “Off-forward parton distributions” in [6,7]. The
connection of these quantities with the “non-diagonal”
ones introduced in [2] is discussed in [5,16] and can be
easily obtained.

We are interested in diffractive DIS processes. The ab-
sorption of a high-energy virtual photon by a quark in a
hadron target is followed by the emission of a particle to be
later detected; finally, the interacting quark is reabsorbed
back into the recoiling hadron. If the emitted and detected
particle is, for example, a real photon, the so-called Deeply
Virtual Compton Scattering [6,7] process takes place. Let
us think now about a nucleon target, with initial and final
momenta P and P ′, respectively. The GPD H(x, ξ,∆2),
the main quantity we deal with in the present paper, is
introduced by defining the twist-two part of the light-cone
correlation function∫

dλ
2π

eiλx

〈
P ′

∣∣∣ψ̄(
− λn

2

)
γµψ

(λn
2

)∣∣∣P〉
=

H(x, ξ,∆2)Ū(P ′)γµU(P )

+E(x, ξ,∆2)Ū(P ′)
iσµν∆ν

2M
U(P ) + ... , (1)

where ∆ = P ′ − P is the momentum transfer to the
nucleon, ellipses denote higher-twist contributions, ψ is
a quark field and M is the nucleon mass. In obtain-
ing eq. (1), a system of coordinates has been chosen
where the photon 4-momentum, qµ = (q0,q), and P̄ =
(P + P ′)µ/2 are collinear along z. The ξ-variable, the so-
called “skewedness”, parameterizing the asymmetry of the
process, is defined by the relation ξ = −n ·∆, where n =
(1, 0, 0,−1)/(2Λ) and Λ depends on the reference frame,
being, for example, Λ = M/2 in the nucleon rest frame.
The ξ-variable is bounded by 0 and

√−∆2/
√
M2 −∆2/4.

Besides, one has t = ∆2 = ∆2
0 − ∆2.

In the r.h.s. of eq. (1), the dependence of the light-
cone correlation function on the GPDs H(x, ξ,∆2) and
E(x, ξ,∆2) is explicitly shown. By replacing, in the above
equation, γµ with the proper Dirac operator, similar ex-
pressions can be derived for defining polarized or chiral

odd GPDs [6]. In the following we will only discuss the
unpolarized, chiral even, twist-two GPD H(x, ξ,∆2).

As explained in [6,7], unlike the usual PDFs which
have the physical meaning of a momentum density in the
Infinite Momentum Frame (IMF), GPDs have the mean-
ing of a probability amplitude. They describe the ampli-
tude for finding a quark with momentum fraction x+ξ/2
(in the IMF) in a nucleon with momentum (1+ξ/2)P̄ and
replacing it back into the nucleon with a momentum trans-
fer ∆µ. Besides, when the quark longitudinal momentum
fraction x of the average nucleon momentum P̄ is less
than −ξ/2, GPDs describe antiquarks; when it is larger
than ξ/2, they describe quarks; when it is between −ξ/2
and ξ/2, they describe qq̄ pairs1.

The region |x| ≥ ξ/2 is often called the DGLAP region,
since the Q2 evolution of GPDs is governed there by the
DGLAP equations of perturbative QCD [26]; the region
|x| ≤ ξ/2 is called the ERBL region, because there the
Q2 evolution is ERBL-like [27]. One should keep in mind
that, besides the variables x, ξ and ∆2 explicitly shown,
GPDs depend, as the standard PDFs, on the momentum
scale Q2 at which they are measured or calculated. For an
easy presentation, such a dependence will be omitted in
the next two sections of the paper, while it will be properly
discussed in the last one.

There are two natural limits for H(x, ξ,∆2) : i) when
P ′ = P , i.e., ∆2 = ξ = 0, the so-called “forward” or
“diagonal” limit, one recovers the usual PDFs

H(x, 0, 0) = q(x) ; (2)

ii) the integration over x is independent of ξ and yields
the Dirac Form Factor (FF)∫

dxH(x, ξ,∆2) = F1(∆2) . (3)

Any model estimate of the GPDs has to respect these two
crucial constraints.

3 A non-relativistic scheme

Our aim now is to evaluate the Impulse Approximation
(IA) expression for H(x, ξ,∆2), suitable to perform CQM
calculations.

Let us start from eq. (1). Substituting the quark fields
in the left-hand side, one has

∫
dλ
2π

eiλx

〈
P ′

∣∣∣ψ̄(
− λn

2

)
γµψ

(λn
2

)∣∣∣P〉
=∫

dλ
2π

eiλx

〈
P ′

∣∣∣ ∑
r,r′,k

[
dr′(k + ∆)v̄r′(k + ∆)ei(k+∆)·λn

2

+b+r′(k + ∆)ūr′(k + ∆)e−i(k+∆)·λn
2

]
×γµ

[
br(k)ur(k)e−ik·λn

2 + d+
r (k)vr(k)eik·λn

2

]∣∣∣P〉
1 Note that in going from ref. [7] to ref. [1], Ji has redefined

ξ/2 by ξ.
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and, taking into account the quarks degrees of freedom
only, it becomes

C =
∑

r,r′,k

∫
dλ
2π

eiλx

〈
P ′

∣∣∣ūr′(k + ∆)b+r′

×(k + ∆)e−i(k+∆)·λn
2 γµbr(k)ur(k)e−ik·λn

2

∣∣∣P〉
.

Using the IA and integrating over λ yields

C �
∑

i

∑
r,r′,k

∫
dλ
2π

eiλ(x−n
2 ·(2k+∆))

×〈P ′|ūr′(k + ∆)b+i,r′(k + ∆)γµbi,r(k)ur(k)|P 〉
=

∑
i

∑
r,r′,k

δ
(
x− n

2
· (2k + ∆)

)

×〈P ′|ūr′(k + ∆)b+i,r′(k + ∆)γµbi,r(k)ur(k)|P 〉 .
Let us introduce ξ = −n ·∆, so that eq. (1) reads now:

∑
i

∑
r,r′,k

δ

(
x +

ξ

2
− n · k

)

×〈P ′|ūr′(k + ∆)b+i,r′(k + ∆)γµbi,r(k)ur(k)|P 〉 =

H(x, ξ,∆2)Ū(P ′)γµU(P )

+E(x, ξ,∆2)Ū(P ′)
iσµν∆ν

2M
U(P ) , (4)

which holds exactly if the antiquark degrees of freedom
are not considered. In fact, the l.h.s. is evaluated in the
IA and the r.h.s. is the leading-twist part of the light-cone
correlation function, so that they have the same physical
content.

By taking the zero-components in the left- and right-
hand sides of eq. (4), considering a process with ∆2 �
M2, one immediately sees that the contribution of the
term proportional to E(x, ξ,∆2), in the right-hand side of
eq. (4), becomes negligibly small, so that H(x, ξ,∆2) is
given by

H(x, ξ,∆2) =
∑

i

∑
r′,r,k

δ

(
x +

ξ

2
− k+

M

)

×〈P ′|u+
r′(k + ∆)b+i,r′(k + ∆)bi,r(k)ur(k)|P 〉 , (5)

where k+ = k0 + k3 has been introduced. In order to
evaluate this expression by means of a CQM, one has to
relate it to nucleon wave functions. In a non-relativistic
framework, if the normalization of the nucleon states is
chosen to be

〈P ′|P 〉 = (2π)3δ(P′ − P) ,

for a symmetric wave function (as is the case in a quark
model once color has been taken into account), one has
(see, e.g. , [28])∑

i

∑
r′,r

〈P ′|u+
r′(k + ∆)b+i,r′(k + ∆)bi,r(k)ur(k)|P 〉

= 3
∫

ψ∗(k1,k2,k + ∆)ψ(k1,k2,k)dk1dk2

=
∫

ei((k+∆)r−kr′)ρ(r, r′)drdr′ ,

= ñ(k,k + ∆) , (6)

where the one-body non-diagonal charge density

ρ(r, r′) =
∫

ψ∗(r1, r2, r′)ψ(r1, r2, r)dr1dr2 (7)

and the one-body non-diagonal momentum distribution
ñ(k,k + ∆) have been introduced. In terms of the latter
quantity, eq. (5) can be written

H(x, ξ,∆2) =
∫

dk δ

(
x +

ξ

2
− k+

M

)
ñ(k,k + ∆) . (8)

The above equation, which is our basic result, permits
the calculation of H(x, ξ,∆2) in any CQM, and it natu-
rally verifies the two crucial constraints, eqs. (2) and (3).
In fact, the unpolarized quark density, q(x), in the IA is
recovered in the forward limit when ∆2 = ξ = 0:

q(x) = H(x, 0, 0) =
∫

dkn(k) δ
(
x− k+

M

)
, (9)

so that the constraint equation (2) is fulfilled. In the above
equation, n(k) is the momentum distribution of the quarks
in the nucleon:

n(k) =
∫

eik·(r−r′)ρ(r, r′)drdr′ . (10)

As is well known, the relation between the quark mo-
mentum distribution and the quark unpolarized density,
eq. (9), can be found by analyzing, in the IA, the handbag
diagram, i.e., the leading-twist part of the full DIS process
(see, e.g., [28,29]), assuming that the interacting quark is
on shell. So, from eq. (8), derived as the non-relativistic
reduction of the light-cone correlation function in the IA,
the quark density appears as the forward limit. Besides,
integrating eq. (8) over x, one trivially obtains∫

dxH(x, ξ,∆2) =
∫

drei∆rρ(r) ,

where ρ(r) = limr′→r ρ(r′, r) is the quark charge density.
The r.h.s. of the above equation gives the IA definition of
the charge FF,∫

drei∆rρ(r) = F (∆2) , (11)

so that, recalling that F (∆2) coincides with the non-
relativistic limit of the Dirac FF F1(∆2), the constraint
equation (3) is immediately fulfilled.

Let us introduce now the following sets of conjugated
intrinsic coordinates:

R =
1√
3

(r1 + r2 + r3) ↔ K =
1√
3

(k1 + k2 + k3) ,

ρ =
1√
2

(r1 − r2) ↔ kρ =
1√
2

(k1 − k2) ,

λ =
1√
6

(r1 + r2 − 2r3) ↔ kλ =
1√
6

(k1 + k2 − 2k3) ,
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in terms of which, in a coordinate system where R = 0,
the FF eq. (11) can be written [20,30]:

F (∆2) =
∫

dkρ dkλ ψ
∗

×
(
kρ,kλ −

√
2/3 ∆

)
ψ (kρ,kλ) , (12)

and H(x, ξ,∆2), eq. (8), by substituting eq. (7) into
eq. (6), reads

H(x, ξ,∆2) =
∫

dkρ dkλ ψ
∗
(
kρ,kλ −

√
2/3 ∆

)

×ψ(kρ,kλ) δ
(
x +

ξ

2
− k+

3

M

)
. (13)

One immediately realizes that eq. (12) is obtained from
eq. (13) by performing the x integration.

With respect to eq. (8), a few caveats are necessary.
First of all, due to the use of CQM wave functions, which
contain only constituent quarks (and also antiquarks in
the case of mesons), only the quark (and antiquark) con-
tribution to the GPDs can be evaluated, i.e., only the
region x ≥ ξ/2 (and also x ≤ −ξ/2 for mesons) can be
explored. In order to introduce the study of the sea region
(−ξ/2 ≤ x ≤ ξ/2), the model has to be enriched. To this
respect, calculations including a substructure of the con-
stituent quark, as proposed by several authors [31–33], are
in progress and will be presented elsewhere [25].

Secondly, we remind that eq. (8) holds under the con-
dition ∆2 � M2. If one wants to treat more general pro-
cesses, such a condition can be easily relaxed by keeping
the terms of O(∆2/M2) in going from eq. (4) to eq. (5).
At the same time, an expression to evaluate E(x, ξ,∆2)
could be readily obtained.

Finally, in the argument of the δ-function in eq. (10),
due to the approximations used, the x-variable is not de-
fined in its natural support, i.e. it can be larger than 1
and smaller than ξ/2. Several prescriptions have been pro-
posed in the past to overcome such a difficulty in the stan-
dard PDFs case [22,23]. The support violation is small for
the calculations that will be shown here. However, one has
to be cautious in interpreting the results after the pQCD
evolution is performed. A deeper discussion of this issue
is beyond the scope of the present work [25].

We stress that our definition of H(x, ξ,∆2) in terms
of CQM momentum space wave functions can be easily
generalized to other GPDs, and the relation of the lat-
ter quantities with other FFs (for example, the magnetic
one) and other PDFs (for example the polarized quark
density) [25] can be recovered. Therefore, the proposed
scheme allows one to calculate GPDs by using any non-
relativistic or relativized [32] CQM, and it is also suitable
to be implemented by corrections due to a possible finite
size and complex structure of the constituent quarks, as
proposed by several authors [31–33].

4 Results in non-relativistic quark models

As an illustration, in this section we present the results of
our approach in the CQM of Isgur and Karl (IK) [24]. In
this model, the proton wave function is obtained in a one-
gluon exchange potential added to a confining harmonic-
oscillator (h.o.) one; including contributions up to the 2h̄ω
shell, the proton state is given by the following admixture
of states:

|N〉 = aS |2S1/2〉S + aS′ |2S′
1/2〉S

+aM|2S1/2〉M + aD|4D1/2〉M , (14)

where the spectroscopic notation |2S+1XJ 〉t, with t =
A,M,S being the symmetry type, has been used. The
coefficients were determined by spectroscopic properties
to be [30]: aS = 0.931, aS′ = −0.274, aM = −0.233,
aD = −0.067.

If aS = 1 and aS′ = aM = aD = 0, the simple h.o.
model is recovered. Let us now calculate the GPD H in
the IK model by using eq. (13). The different components
appearing in the momentum space wave functions, ob-
tained from eq. (14) in the IK model, can be found in [30,
34]; for the h.o. model, the corresponding wave function
in momentum space reduces to [29,30]

ψ(kρ,kλ) =
e−

k2
ρ+k2

λ
2α2

π3/2α3
, (15)

where the h.o. parameter can be fixed to α2 = 1.35f−2 in
order to reproduce the low-t behavior of the charge FF,
i.e., the r.m.s. value of the proton radius.

The results in the IK model for the GPD H(x, ξ,∆2),
for the flavours u and d, respectively, neglecting in (14)
the small D-wave contribution, are found to be

Hu(x, ξ,∆2) = 3
M

α3

(
3

2π

)3/2

×e−
∆2

3α2

∫
dkx

∫
dky f0(kx, ky, x, ξ,∆

2)

×
(
fs(kx, ky, x, ξ,∆

2) + f̃(kx, ky, x, ξ,∆
2)

)
, (16)

Hd(x, ξ,∆2) = 3
M

α3

(
3

2π

)3/2

×e−
∆2

3α2

∫
dkx

∫
dky f0(kx, ky, x, ξ,∆

2)

×
(

1
2
fs(kx, ky, x, ξ,∆

2) − f̃(kx, ky, x, ξ,∆
2)

)
, (17)

with

f0(kx, ky, x, ξ,∆
2) =

k̄0

k̄0 + k̄z

×fα(∆x, kx)fα(∆y, ky)fα(∆z, k̄z) , (18)

fα(∆i, ki) = e−
1

α2 ( 3
2 k2

i +ki∆i) , (19)
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k̄z =
M2(x + ξ/2)2 − (m2 + k2

x + k2
y)

2M(x + ξ/2)
, (20)

fs(kx, ky, x, ξ,∆
2) =

2
3
a2

S

+a2
S′

[
5
6
− k2

α2
+

1
2
k4

α4
+

2
3α2

(
∆2

3
+ ∆ · k

)(
k2

α2
− 1

)]

+a2
M

[
5
12

− 1
2
k2

α2
+

1
4
k4

α4
+

2
9

k

α2

√
9
4
k2 + ∆2 + 3∆ · k

+
1

3α2

(
∆2

3
+ ∆ · k

) (
k2

α2
− 1

) ]

+aSaS′
2√
3

[(
1 − k2

α2

)
− 2

3α2

(
∆2

3
+ ∆ · k

)]
, (21)

f̃(kx, ky, x, ξ,∆
2) =

−aSaS′
2√
3

[(
1 − k2

α2

)
− 2

3α2

(
∆2

3
+ ∆ · k

)]

−aMaS′
1√
2

[
1
6
− k2

α2
+

1
2
k4

α4
− 2

3α2

(
∆2

3
− ∆ · k

)

+
2k2

3α4

(
∆2

3
+ ∆ · k

)]
(22)

and k̄0 =
√
m2

q + k2
x + k2

y + k̄2
z , i.e., the interacting quark

has been assumed to be on shell.
A few comments are in order:

– The x integration of eqs. (16) and (17) gives the u-
and d-flavor contribution to the proton charge FF in
the IA, respectively, as given in [34];

– In the forward limit, ξ = 0, ∆2 = 0, eqs. (16)
and (17) give the distributions Hu(x, 0, 0) = u(x) and
Hd(x, 0, 0) = d(x) in the Isgur and Karl model, ac-
cording to the findings of ref. [35].

The results in the simple h.o. model can be immedi-
ately found from the ones presented above, just putting
aS = 1, aS′ = aM = 0 in eqs. (21) and (22). In particular,
by using the wave function eq. (15) in eq. (12), one gets
trivially

F (∆2) = e−
∆2

6α2 . (23)

Besides, taking the “forward” limit, ∆2 = ξ = 0, of
eq. (13) and substituting in the wave function eq. (15),
or, which is the same, taking the forward limit of eqs. (21)
and (22) with aS = 1, aS′ = aM = 0, and performing ana-
litically the integrations in eqs. (16) and (17), one easily
obtains

H(x, 0, 0) =
2πM
α3

(
3

2π

)3/2 ∫ ∞

k−(x)

dkke−
3k2

2α2 , (24)

where the integration limit k−(x) is

k−(x) =
M

2

[
x− m2

q

M2

1
x

]
(25)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fig. 1. The Proton Charge Form Factor, as given by eq. (12)
in the IK model.

and mq is the quark mass. This is the same expression
obtained in [29] starting from eq. (9), using n(k) corre-
sponding to the present model (called “model 1” in [29]):

n(k) =
(

3
2π

)3/2
e−

3k2

2α2

α3
. (26)

Results are shown in figs. 1 to 5.
The behavior of the proton charge FF in the IK model

is shown in fig. 1. It is known [30] that such a FF under-
estimates the data for large values of ∆2.

Results for the GPD H at the low-momentum scale
µ2

o associated with the model, are shown in figs. 2 to 5. A
value of mq � M/3 has been used for all the estimates.
Note that all the results are shown in the x ≥ ξ/2 region.
We reiterate in fact that what has been calculated so far
is the valence quark contribution to the full GPD H, so
that we can provide estimates only in the positive DGLAP
region.

In fig. 2, the ∆2-dependence of our results for the u
and d flavors is shown. The forward ∆2 = ξ = 0 limit cor-
responds to the full line. One immediately realizes that a
strong ∆2-dependence is found, in comparison with other
estimates, for example with the one predicted in [11]. This
has to do with the already discussed strong t-dependence
of the FF in the IK model.

In figs. 3 and 4 we have the full ∆2- and ξ-
dependences. These findings, particularly clear from the
three-dimensional plots in fig. 4, are similar to the ones
obtained in [11], although the ξ-dependence is a little
stronger.

The scale of the top and bottom panels in figs. 2 and 3
has been chosen in such a way that they would look ex-
actly the same if the model were SU(6) symmetric (in
fact, in that case, one would have Hu = 2Hd). The ob-
served difference clearly shows to what extent the SU(6)
symmetry is broken in the IK model.

In fig. 5, the comparison between the predictions of the
IK and of the simple h.o. models is shown. As an example,
results are presented for the d distribution at ξ = 0.
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Fig. 2. The GPD Hq(x, ξ, ∆2), eqs. (16) and (17), calculated
for ξ = 0 and three values of ∆2: the full line corresponds to
∆2 = 0 GeV2, the short-dashed one to ∆2 = −0.2 GeV2 and
the long-dashed one to ∆2 = −0.5 GeV2. Top (bottom) panel:
the u (d) flavor distribution. Notice that, due to the chosen
scale, the top and bottom panels should look the same if the
model under scrutiny were SU(6) symmetric.

5 QCD evolution of the model calculations

According to a well-established [21,22], widely used
scheme (see, for example, [23]), the results shown so far
for H(x, ξ,∆2) correspond to the low-momentum scale µ2

o

associated with the model, and in order to compare them
with the data of future experiments, one has to evolve
them to experimental, high-momentum scales. We next
proceed to do so.

As already mentioned in the introduction, an impres-
sive effort has been devoted to studies of QCD evolution
properties of GPDs, an essential feature to understand
their physical content and to obtain the correct informa-
tion from experiments. The QCD evolution of GPDs is
presently known in both the DGLAP and ERBL regions,
up to NLO accuracy [17,18].

The evolution of the results presented in the previous
section has been carried on by using an evolution code
kindly provided by Freund and Mc Dermott, adapted by
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Fig. 3. The GPD H(x, ξ, t), eq. (21), calculated for ∆2 =
−0.2 GeV2 and three values of ξ: the full line corresponds to
ξ = 0, the short-dashed one to ξ = 0.1 and the long-dashed one
to ξ = 0.2. Top (bottom) panel: the u (d) flavor distribution.
Notice that only the x ≥ ξ/2 region is shown. Due to the scale
used, the top and bottom panels should look the same if the
model under scrutiny were SU(6) symmetric.

us to our specific case. The features and performances of
such a code are described in [18], and an interface to it
is available at the web site [36]. In order to be used as
input in the evolution code, our GPDs have been trans-
lated into the Golec-Biernat, Martin off-diagonal parton
distributions F̂(x1, ζ) [37]. The new distribution and the
variables x1 and ζ are obtained from our quantities H, x
and ξ according to definitions given in [37]. Once the evo-
lution has been performed, results have been translated
back to our notation to allow a consistent presentation.

The scale to be associated with the model is a low one,
and the choice of its value is part of the model assump-
tions. We have chosen here µ2

o = 0.34 GeV2, corresponding
to the initial scale of the so-called valence scenario of [38],
since our input at the scale of the model is given by the
valence quark contribution only. A thorough discussion
about the choice of the initial scale can be found in [23].
Of course, being the starting scale so low, it becomes very



S. Scopetta and V. Vento: Generalized Parton Distributions . . . 533

Fig. 4. The GPD H(x, ξ, t), eq. (21), calculated at fixed
ξ = 0.1 and −∆2 in the range −0 GeV2–0.5 GeV2 (top
panel), and at fixed ∆2 = −0.3 GeV2 and ξ in the range 0–0.3
(bottom panel).

important to perform the evolution as accurately as pos-
sible. From this point of view, the NLO level, used here,
permits a safe result.

The evolved GPDs at Q2 = 10 GeV2 are shown in
figs. 6 and 7, for two values of ξ and ∆2, for the Non-
Singlet (NS) part of the u- and d-flavor distributions, to-
gether with the input at the initial scale. One should notice
again that only the positive DGLAP region is shown, for
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Fig. 5. The GPD Hd(x, 0, ∆2), calculated within the IK (full
line) and the h.o. (dashed line) models, for ∆2 = 0 GeV2 (top),
−0.2 GeV2, −0.5 GeV2 (bottom).
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Fig. 6. The NS, q-flavor GPD, HNS
q (x, ξ = 0.1, ∆2 =

−0.2 GeV2, Q2 = 10 GeV2) (full line), evaluated evolving at
NLO the initial IK model distribution HNS

q (x, ξ = 0, ∆2 =
−0.2 GeV2, µ2

o = 0.34 GeV2) (short-dashed line). Top (bot-
tom) panel: the u (d) flavor distribution. Only the x ≥ ξ/2
region is shown. Due to the chosen scale, the top and bottom
panels should look the same if the model under scrutiny were
SU(6) symmetric.
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Fig. 7. As in fig. 6, but at ξ = 0.2, ∆2 = −0.5 GeV2.

both the input and the evolved distributions. As happens
in the conventional PD case, and is easily understood,
evolution lowers the mean x of the distribution, i.e., the
partons accumulate near x = ξ/2.

In fig. 8 a three-dimensional plot of the Q2 evolution,
for fixed ξ = 0.1 and fixed ∆2 = −0.2 GeV2, is also shown.

6 Conclusions

Generalized Parton Distributions (GPDs) are a useful tool
to access several relevant features of the structure of the
nucleon, such as the angular momentum sum rule. A sys-
tematic theoretical study of many aspects of these objects
started few years ago and it is being carried on in these
years. The future experimental effort to measure GPDs
is also ambitious, and, in this respect, theoretical esti-
mates will be necessary for the planning of future experi-
ments. In the present paper we propose a general formal-
ism to investigate GPDs by means of non-relativistic or
relativized Constituent Quark Models. Starting from the
general field-theoretical definition of the related light-cone
correlation function, by performing an Impulse Approx-
imation analysis and the non-relativistic limit, the un-
polarized, leading-twist GPD H(x, ξ,∆2) is obtained in

Fig. 8. The NS, u-flavor GPD, HNS
u (x, ξ = 0.1, ∆2 =

−0.2 GeV2, Q2), with Q2 in the range µ2
o = 0.34 GeV2–Q2

= 10 GeV2.

terms of the nucleon wave functions in momentum space.
From its expression, the quark momentum density is re-
covered as the forward limit, and the charge Form Factor
as its x integral. Results for the valence quark contribution
to H(x, ξ,∆2), in a simple harmonic-oscillator model, as
well as in the Isgur and Karl constituent quark model, are
shown to have the general behavior obtained in previous
estimates. NLO evolution to high experimental scales of
the low-momentum results obtained in the model has been
performed. A proper treatment of the ERBL region within
a constituent picture is presently under investigation.

The proposed approach can have many interesting de-
velopments, such as the calculation of other GPD func-
tions and DVCS observables, the use of relativistic models
and the addition of effects due to a possible finite size and
complex structure of the constituent quarks, as proposed
by several authors.
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